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ABSTRACT
Image inpainting, also known as image completion, is the pro-
cess of filling in the missing region of an incomplete image to
make the repaired image visually plausible. Strided convolu-
tional layer learns high-level representations while reducing
the computational complexity, but fails to preserve existing
detail from the original images (eg, texture, sharp transients),
therefore it degrades the generative model in image inpaint-
ing task. To reduce the erosion of high-resolution compo-
nents of images meanwhile maintaining the semantic repre-
sentation, this paper designs a brand-new network called In-
teractive Separation Network that progressively decomposites
the features into two streams and fuses them. Besides, the
rationality of network design and the efficiency of proposed
network is demonstrated in the ablation study. To the best of
our knowledge, the experimental results of proposed method
are superior to state-of-the-art inpainting approaches.

Index Terms— Image Inpainting, Deep Learning, Fea-
ture Representation, Multi-Scale Feature, Feature Fusion

1. INTRODUCTION

Image inpainting, the process of reconstructing the corrupted
parts of an incomplete image, plays a vital role in various
computer vision applications. Since Convolutional Neural
Network (CNN) has been introduced into the research field
of image inpainting, learning-based image inpainting ap-
proaches have been rapidly developed. Although the strided
convolution and pooling layer in CNN inevitably drop out
some high-resolution spatial signals, they have pivotal roles
in compressing the features into a high-level representation.

Due to this advantage of CNN, most of learning-based
methods have the ability to fill in the damaged area by hallu-

This research is supported by Sichuan Science and Technology Program
(No. 2020YFS0307, No. 2019YFS0146, No. 2019YFS0155), National Nat-
ural Science Foundation of China (No. 61907009), Science and Technology
Planning Project of Guangdong Province (No. 2019B010150002), Natural
Science Foundation of Guangdong Province (No. 2018A030313802).

cinating (imagining) some novel objects similar to the coun-
terpart existing in the real world. The one of typical work
benefitted from CNN is the Context Encoder [1], which firstly
applies deep learning to image inpainting and demonstrates
that the learning-based method can greatly outperform the
traditional methods. Context Encoder embeds the corrupted
image into the high-level feature maps with low-dimension,
which the decoder then uses to reconstruct the predicted im-
age. However, due to its monotonic loss function and sequen-
tial network structure, the resulting images are visually ob-
scured and contain many inconsistent artifacts. Affected by
this fundamental contribution, the encoder-decoder architec-
ture has been commonly used as a generative model in the
learning-based approaches for image inpainting.

Since Goodfellow et al. proposed Generative Adversarial
Network (GAN) [2], it has become popular to use adversar-
ial learning to enhance generated image quality. Iizuka [3]
proposed two discriminators to reinforce the global and lo-
cal consistency of restored images. But the training process
in Iizuka’s work is fragile and hard to converge due to the use
of raw discriminator without optimization measurements, and
their outcomes largely rely on post-processing to eliminate
style inconsistencies around the boundaries of filled region.

In order to rule out invalid placeholders, Liu et al. [4]
renormalizes the traditional convolution into Partial Convo-
lution which features calculation is based on the mask maps.
The Partial Convolution only calculates the valid pixels of
features, while the validity of pixels is determined by the cor-
responding binary mask. On account of the perceptual loss
are introduced into this work, their model is able to eliminate
the color inconsistencies around the borders. Although their
result is visually plausible, their structural information in the
filled region mismatch the neighborhoods. Yu et al. [5] also
proposed Gated Convolution and use hand-written sketches to
guide the inpainting process.

Kamyar et al. [6] proposed two-stage inpainting schemes
which firstly restores the damaged edge map and then colors
the image with the recovered edge map. However, both Kam-



Fig. 1. The architecture of Interactive Separation Network. (The 4th stage and discriminator of ISNet are omitted for clarity.)

yar [6] and Yu [5, 7] exploit a two-stage inpainting strategy,
they build a different network in each stage, thus it relies on
intensive computation and memory, and their performance of
their second network will suffer if the first stage network has
poor inpainting prediction. Is there a network efficiently cap-
turing both the structural information and texture information
of images?

In other deep learning studies, Lin et al. proposed a pyra-
mid network [8] for object detection in different sizes, which
proves that the large scale features are more feasible to detect
small objects. Sun et al. proposed a network with high-
resolution representation for gesture estimation [9], which
repeatedly conduct multi-scale fusions. The other valuable
work [10] demonstrates the feature maps in different scales
play different roles, this inspires us in image inpainting tasks
to use high-resolution features to capture the high-frequency
details and low-resolution features maps for processing low-
frequency signals of the image.

This work design a novel inpainting network, named In-
teractive Separation Network (ISNet), which not only main-
tains the high-resolution features but also learns the high-level
semantics by deep features. In the proposed ISNet, there are
three main operations to manipulate the feature representation
- Inpainting, Interaction, and Aggregation, which form one
whole stage in ISNet, and the step-by-step connection of the
stages constitute the main body of ISNet. The short version
of the ISNet framework is shown in Figure 1. This paper also
studies the efficiency of ISNet and different network settings
in ablation experiments, and the integrated architecture of IS-
Net with GAN is demonstrated that achieve the state-of-the-
art inpainting results. The code and pre-trained models can
be accessed at https://github.com/GuardSkill/
Large-Scale-Feature-Inpainting.

2. ISNET

As shown in Figure 1, ISNet consists of 4 consecutive stages
(for clarity, stage 4 is omitted from the diagram). Different
from the HRNet [9], it only has two parallel branches to deal
with feature maps at two different scale levels. At each new
stage, the channel number of smaller resolution features will
increase, while the resolution of the smaller resolution fea-
tures decreases. From the left to right, as the depth of net-
work increases, the semantics of feature becomes stronger. In
another aspect, from the bottom up, the feature is more feasi-
ble to learn high-resolution information of the image, such as
texture, local gradience.

2.1. Inpainting, Interaction and Aggregation

As illustrated in Figure 2, each stage in ISNet has two
branches to handle feature maps in different scales and con-
sists of three processes, which named Inpainting, Interaction
& Aggregation. After the Aggregation operation of the pre-
vious stage, 4 residual blocks [11] are adopted in Inpainting
process to extract the high-level representation and repair fea-
ture maps in both branches, which reduces the degeneration
caused by the network depth increasing. And the reason for
the number of residual blocks is set to 4 will be explained in
Section 3.1.

In the Interaction process, we adopt one convolution layer
with stride 2 to scale down the feature maps in the second
branch and n (where n equal to stage index) convolution lay-
ers with stride 2 to downsample the feature in the first branch
to same targeted resolution, then we concatenate these feature
maps as the input of second branch in Aggregation process.
Similarly, for generating the features of the first branch, we
put the second branch feature into n − 1 Sub-Pixel [12] con-
volutional layers to get high-resolution features, which take
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Fig. 2. The detailed design of each stage.

advantage of convolution to learn an adaptive upsample strat-
egy, then concatenate them with the original feature of the first
branch to updated feature. In the 1st stage, it is worth noting
that the Inpainting and Interaction process only inputs the first
branch because there only are larger-scale feature maps.

In the Aggregation operation, we exploit 3x3 convolu-
tion to compress the channels of feature to specific numbers,
which depends on feature scales. When the resolution is re-
duced, the ISNet distributes 32, 64, 128, 256, 512 specific
channels to different scales.

2.2. Network and Loss Function

At the head of ISNet, the damaged image is embedded into
32-dimensional feature maps with the same resolution, then
these features maps are sequentially fed into 4 stages, finally
produce two kinds of features with different scales. Although
it’s feasible to directly output high-resolution feature in the
end, we apply a Final Fusion (FF) process which decodes the
two kinds of features to 32-dimensional feature maps.

At the end of ISNet, we also build a discriminator model
similar to EdgeConnect [6], which facilitates the inpainting
result by adversarial learning. In spite of spectral normaliza-
tion [13] was originally used only in discriminators, Odena
[14] has recently shown that spectral normalization can keep
generators away from dramatic changes of parameters and
gradient. Therefore, we apply spectral normalization [13] to
each layer of ISNet.

For the convenience of representation, this paper denotes
the function mapping of generator and discriminator in ISNet
as G and D respectively. If the Igt, M, Ipred respectively
refer to ground truth image, the binary mask that labels cor-
rupted region as 0, the image ISNet predicts, the function of
generator can be described as equation 1.

Ipred = G (Igt �M) (1)

Where � represents element-wise multiplication. ISNet also
exploits the loss funcion similar to those state-of-art work [4–

6], the total loss function is formaluted as equation 2.

LG = L`1+0.1(−LD)+0.1Lperc+250Lstyle+10LFM (2)

where Lperc and Lstyle refer to perceptual loss [15], LFM is
the feature matching loss that represent the difference of the
activation maps in the intermediate layers of the discrimina-
tor. L`1 is the L1 distance between repaired image and ground
truth. LD means adverarial loss, this paper adopts the hinge
loss (Equation 3) as the objective function of discriminator,
which train the discriminator more strictly.

LD = Egt [ψ(1−D (Igt))]

+ Epred [ψ (1 +D (Ipred � (1−M)))]
(3)

3. EXPERIMENTS

This Section explains some network settings of ISNet through
ablation experiments, and evaluates the comparative perfor-
mance of ISNet on two public datasets - Places2 [16] and
CelebA [17]. The binary mask dataset used in all the experi-
ments is made by Liu et al. [4].

3.1. Ablation Study

Places2 has more than one million training images and
328,500 test images. In order to confidently demonstrate
the design of ISNet, this paper selects the bigger Places2
as the evaluation dataset for the ablation study. Structural
similarity index (SSIM) [18] with a window size of 11, peak
signal-to-noise ratio (PSNR) and L1 distances are evaluated
on the test dataset of Places2 for different models. It’s worth
to note that all these measurements are based on the computa-
tion between composite image Icomp and ground truth image
Igt, where Icomp = Ipred � (1−M) + Igt �M .

We start with the base model of the missing final fu-
sion (FF) process, and all the upsample layers are traditional
bilinear interpolation instead of Sub-Pixel layers. It’s notice-
able that FF process will increase the learnable weights. To
demonstrate the improvement does not only benefits from
the increase of weight number, this experiment manually re-
duces the number of channel in some intermediate layers of
base model when adding the FF operation. (Row 2, Table
1) To prove the efficiency of ISNets-like models, we also
introduced a UNet-like [19] generator model from [6], and
make its magnitude of parameters similar to ISNet via adding
additional layers both in encoder and decoder. Table 1 shows
the performance of models with different components on the
Places2 test dataset. All the models are trained until conver-
gence, and the training environments are constant(eg, random
seed, learning rate). It can be concluded that the ISNets-style
models have better quantitative performance than UNet-like
mode, regardless of the number of parameters.

This paper also explores the impact of the number setting
of residual blocks in each stage of ISNet, it records the per-
formance and parameter number of ISNet in different blocks



Table 1. The evaluation of models with different components,
here the ISNet refers to the BaseModel+FF+Sub-pixel.

Models Parameters PSNR L1(%) SSIM

BaseModel 15.75M 27.9095 2.12 0.8800
BaseModel+FF 13.93M 28.2757 2.06 0.8860
ISNet 23.63M 28.5304 1.91 0.8854
UNet-like Net 23.27M 25.9900 2.51 0.8508

Table 2. The performance of ISNet with different numbers of
residual blocks setting in each stage.

Blocks Parameters PSNR L1(%) SSIM

4 23.63M 28.5304 1.91 0.8854
3 22.08M 28.4679 1.97 0.8843
2 20.53M 28.4707 1.97 0.8841
1 18.99M 28.0165 2.05 0.8816

setting (Table 2). In addition to proving effectiveness of resid-
ual blocks, it provides a reference for ISNet application that
requires different memory.

3.2. Comparison and Discussion

This work also evaluates the ISNet using the metrics involved
in Section 3.1 in the different proportions of the corrupted re-
gion and compares these results with the state-of-art inpaint-
ing approaches. The quantitative results on places2 are shown
in Table 31 , and the comparison of CelebA dataset is dis-
played on Table 41. These data show that regardless of the
proportion of damaged areas, ISNet can achieve better qual-
itative (Figure 3) and quantitative performance in all aspects
of the indicators. It demonstrates that high-resolution compo-
nents and deeper features play an important role in addressing
the issue of texture inconsistent in image inpainting.

Table 3. The performance of ISNet on Places2 test dataset,
these data1 are taken from literature [6].

Mask Ratio CA [7] GLCIC [3] PConv [4] EdgeCnt [6] ISNet

10-20%
PSNR 24.36 23.49 28.02 27.95 31.41
SSIM 0.893 0.862 0.869 0.920 0.960
L1(%) 2.41 2.66 1.14 1.50 0.63

20-30%
PSNR 21.19 20.45 24.9 24.92 26.88
SSIM 0.815 0.771 0.777 0.861 0.912
L1(%) 4.23 4.7 1.98 2.59 1.38

30-40%
PSNR 19.13 18.5 22.45 22.84 23.90
SSIM 0.739 0.686 0.685 0.799 0.854
L1(%) 6.15 6.78 3.02 3.77 2.34

40-50%
PSNR 17.75 17.17 20.86 21.16 21.34
SSIM 0.662 0.603 0.589 0.731 0.778
L1(%) 8.03 8.85 4.11 5.14 3.74

1According to the code of [6], the formulation of L1 measurement in [6]
is not standard average Manhattan distance (L1 norm).

4. CONCLUSION

Due to ISNet plays a critical role in the maintenance of high-
resolution feature and semantic information in deeper layers,
it achieves promising inpainting results. Additionally, the ad-
ditional residual block can further facilitate inpainting quality
in ISNet. However, evidence suggests that the improvement
of repaired images in large damaged regions is limited, we can
focus on how to enhance the robustness of inpainting model
to large damaged region in the future work.

Table 4. The performance of ISNet over CelebA dataset.
Mask Ratio CA [7] GLCIC [3] EdgeCnt [6] ISNet

10-20%
PSNR 25.32 24.09 33.51 37.31
SSIM 0.888 0.865 0.961 0.980
L1(%) 2.48 2.53 0.76 0.33

20-30%
PSNR 22.09 20.71 30.02 32.13
SSIM 0.819 0.773 0.928 0.954
L1(%) 3.98 4.67 1.38 0.75

30-40%
PSNR 19.94 18.50 27.39 28.69
SSIM 0.750 0.689 0.890 0.921
L1(%) 5.64 6.95 2.13 1.3

40-50%
PSNR 18.41 17.09 25.28 25.37
SSIM 0.678 0.609 0.846 0.869
L1(%) 7.35 9.18 3.03 2.26

Fig. 3. Comparison of qualitative results over Places2 (first 2
rows) and CelebA (last 2 rows) with official pre-trained mod-
els: (a) Damaged Image. (b) CA [7]. (c) EdgeCnt [6]. (d)
ISNet.
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