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Abstract. With the development of deep learning, there are a lot of
inspiring and outstanding attempts in image inpainting. However, the
designed models of most existing approaches take up considerable com-
puting resources, which result in sluggish inference speed and low com-
patibility to small-scale devices. To deal with this issue, we design and
propose a lightweight pyramid inpainting Network called LPI-Net, which
applies lightweight modules into the inpainting network with pyramidal
hierarchy. Besides, the operations in the top-down pathway of the pro-
posed pyramid network are also lightened and redesign for the imple-
mentation of lightweight design. According to the qualitative and quan-
titative comparison of this paper, the proposed LPI-Net outperforms
known advanced inpainting approaches with much fewer parameters. In
the evaluation inpainting performance on 10-20% damage regions, LPI-
Net achieves an improvement of at least 3.52 dB of PSNR than other
advanced approaches on CelebA dataset.

Keywords: Image Inpainting · Lightweight Network · Deep Convolu-
tion.

1 Introduction

Digital image inpainting technology, which aims at completing the missing con-
tents of damaged images, is a basic and critical research task in the field of
computer vision. In recent years, with the rapid progress of deep convolution
neural networks (DCNN), digital image inpainting technology has attracted ex-
tensive interest and achieve great progress. Up to now, most of these advanced
approaches adopt the lengthy and complicated image inpainting generators.
Therefore, these methods are greatly dependent on considerable computational
resources and have a high inference latency. But in many popular vision applica-
tions, such as mobile applications, website tools, and batch image processing, the
image inpainting tasks are expected to be carried out on small-scale platforms
with limited computation.

Among the recent literature about efficient architecture, Andrew G. et al. [4]
proposes a small, low latency general network constructed by depthwise sep-
arable convolutions modules, which is called as MobileNet. Afterward, Mark
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Sandler et al. [14] further extend MobileNet to the second version (MobileNet
V2) by applying the linear bottlenecks block and inverted residuals. Due to the
principal tasks of these general architectures are image classification and object
detection tasks, these networks lack a forceful decoder, and therefore they cannot
directly be applied to the image inpainting task.

This paper proposes an efficient pyramid network that is specifically designed
for image inpainting and resource-constrained environments, which is named as
Lightweight Pyramid Inpainting Network (LPI-Net). The proposed architecture
combines the modified pyramid network with the novel lightweight ResBlock
to adapt the image inpainting task. Due to the exquisite design of the pyra-
mid network for the inpainting task, LPI network achieves excellent inpainting
performance with a small number of parameters.

Fig. 1. The general design of the Lightweight Pyramid Inpainting Network, which
consists of 5 stages in the bottom-up pathway (left half of the figure) and 4 steps in
the top-down pathway (right half).

In addition, the proposed architecture is evaluated on Place2 [19] and CelebA [9]
dataset. Compared with other inpainting methods, the proposed architecture ob-
tains equivalent state-of-art performance in qualitative and quantitative aspects.
In conclusion, the main contributions of this paper are as follows:

• We propose a tailored pyramid generator network specifically for image in-
painting tasks. The structure and first layer of generator are specifically designed
for inpainting.

• To reduce the parameters and computation of the designed model, the
depthwise separable convolutions module and linear bottleneck module are em-
bedded in the suitable position of the LPI-Net, the united layers are named as
lightweight ResBlock.

• Experiments on two public datasets show that proposed LPI network
achieves competitive inpainting results and only consumed little computing re-
sources.
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2 Related Work

In the last few years, a variety of image inpainting literature introduces the deep
convolution neural network, which can extract semantic information for struc-
tural inpainting. Besides, because the Generative Adversarial Network (GAN) [1]
has the ability to generate novel content similar to the counterpart existing in the
training dataset, most of the advanced inpainting methods introduce adversarial
learning.

Context Encoder (CE) [12] is one of the earlier work that introduces the
GAN to the learning-based inpainting, the encoder of CE embeds the corrupted
image into the high-level compact features with low-resolution and multiple
channels, then the decoder utilizes these compact features to reconstruct the
high-resolution features.

This approach has demonstrated that the excellent ability of the GAN-based
convolution neural network in the understanding image context. Because Con-
text Encoder can craft realistic objects in the missing region, its inpainting
performance is far superior to the non-learning inpainting method [2]. However,
due to the excessive compression of features and sequential forwarding process,
some contents generated by CE are visually obscured.

Following the proposal of CE [2], Iizuka et al. [5] proposes a large-scale GAN-
based inpainting architecture with two sibling discriminators, which aim to im-
prove the local authenticity and overall rationality of inpainted image. However,
because style inconsistencies exist in the generated image, the inpainting perfor-
mance is greatly dependent on the post-processing in GLCIC [5]. In addition,
due to the complexity of the architecture, the training process of GLCIC is both
time-consuming and unstable.

Recent literature [17,18,10] exploit a two-stage architecture to complete im-
ages in two steps. Although these methods achieve state-of-the-art inpainting
performance, the intricate workflow and considerable computation limit the
wider application of image inpainting.

Feature Pyramid Network (FPN) [7] is originally proposed to detect objects
in different scales, the decoder of FPN maintains a multi-scale feature represen-
tation, where all levels are semantically stronger than Unet-like [13] networks,
including high-resolution level features in the decoder. The strong semantics
with the high-resolution feature is conducive to the reconstruction of the overall
scene and detailed information. Therefore, the architecture similar to FPN can
be applied to the task of image inpainting. However, due to the use of multiple
residual blocks [3] in each stage of FPN, FPN has a large number of parameters
and takes up considerable memory.

MobileNet [4] builds the network blocks with depthwise separable convolu-
tions, which is designed to reduce the redundancies of filter weights. The depth-
wise separable convolutions reform the standard convolution to two layers - a
depthwise convolutions layer and a pointwise convolution. The depthwise convo-
lution layer only adopts a single 2D filter per each input channel (input depth),
instead of using multiple 3D filters in standard convolution. And the pointwise
convolution is equivalent to a simple 1 × 1 standard convolution, which is used
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to employ a linear transformation of the output of the depthwise layer. More
specifically, the standard convolutional layer takes as input a feature map F
with the shape of x×y×M . It produces an x×y×N feature map G. Rather in
depthwise separable convolutions, the depthwise convolution inputs an x×y×M
feature and temporarily produce an x × y ×M intermediate feature by M 2D
filters. And then, the pointwise convolution process the intermediate feature and
finally generate an x× y×N output. Because depthwise convolution only filters
input channels with M 2D filters, depthwise separable convolution is extremely
efficient relative to standard convolution.

Afterward, MobileNetV2 [14] extends the depthwise separable convolution to
the linear bottlenecks and residual block, which reduce both the operating space
and computing parameters. As we observe, this enhanced residual bottleneck
is feasible to replace the residual block in the pyramid network. It can greatly
reduce the complexity of computation and parameters of the pyramid model.

3 Proposed Method

3.1 Architecture of LPI-Net

The raw Feature Pyramid Networks (FPN) [7] consists of the bottom-up path-
way, top-down pathway, and lateral connections, each pathway involves features
at several scales with a scaling step of 2. At each feature block with the same
scale, each pathway process the feature maps with more than three residual
blocks. In order to facilitate the application of object detection, all stages in the
top-down pathway maintain the dimension of features at 256. All these original
designs for object detection make FPN a gigantic network, and it can not be
directly applied to lightweight image inpainting.

In the paper, we proposed a lightweight inpainting network named Lightweight
Pyramid Inpainting Network, which has a general architecture similar to the
FPN but reduces some intricate and redundant designs. Moreover, the first layer
and inside operations of LPI network are modified to better adapt to image
inpainting, which can efficiently extract the high-resolution features.

As shown in Figure 1, the general components of LPI network include the
bottom-up pathway, top-down pathway, and lateral connections. Similar to the
FPN [7], the bottom-up pathway consists of 5 stages, where each stage contains
one standard convolution layer and N residual bottleneck layer with depthwise
separable convolutions [14]. Inside each stage, the operations manipulate and
produce feature maps of the same size. Thus we thumbnail each stage into one
rectangle in the diagram (Figure 1) for better visualization. Moreover, the oper-
ation group in the top-down pathway of LPI network is simplified and referred
to as ’steps’.

3.2 The Internal Structure of Each Stage in Bottom-up Pathway

Figure 2 shows the concrete internal process of each stage in the LPI network,
which includes a standard convolution layer and N novel lightweight residual
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bottlenecks (lightweight ResBlocks). The N is the number of superimposed
lightweight blocks, and it is a hyperparameter that determines the scale of the
LPI network.

The first convolution layer in each stage is designed to control the variation of
resolution of all features in that stage, and it can expand the channel dimension of
feature to a specific amount. In the lightweight ResBlock, the tanh(x) activation
function is adopted to deliver feature values into the range between -1 and 1, and
the same paddings in each layer of lightweight ResBlock are used to maintain
the same space dimension.

Fig. 2. The forward process of each stage in the bottom-up pathway of the pyramid
inpainting network, the ’Dwise’ in the diagram refers to depthwise convolution [4].

To obtain the detailed information from the original image, we set the stride
of the first convolution layer in the first stage of the bottom-up pathway as
1, so that the first stage adequately extracts and operates the full-resolution
features from the corrupted image. This novel layer is specially designed for
image inpainting tasks. Because the bottom-up pathway in the pyramid network
aims to encode the image to compact features, the stride in other stages of the
bottom-up pathway is set to 2, which gradually reduces the space dimension of
features in the forwarding process.

3.3 Top-down Pathway and Lateral Connections

The top-down pathway of LPI network reconstructs the high-resolution features
by lateral connections, bilinear upsampling layer, and standard convolution lay-
ers.

The detailed operations of each step in the top-down pathway are shown
in Figure 3. The channel reduction layer reduces the dimension of features be-
fore the subsequent operations, the smooth layer maintain the channel of feature
unchanged, which aims to process and fuse the upsampled features and the trans-
ferred features from the bottom-up pathway. Thus there are only two standard
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convolution layers in each step of the top-down pathway. These designs retrench
a great deal of computation and space resources from the pyramid network.

Fig. 3. The forwarding process of lateral connections and detailed per step in the
top-down pathway, the upsampling layer refers to bilinear interpolation.

3.4 Loss Function and Adversarial Learning

Similar to those advanced inpainting work [5,12,18,10], we also exploit the ad-
versarial learning [1] to improve the inpainting performance. In this paper, the
function of the LPI network (generator) and discriminator are respectively de-
noted as G(x) and D(x), and the design of D(x) is similar to one of the recent
advanced work [10].

The G and D play the two-player minimax game in adversarial learning,
the adversarial loss is described in Equation 1. The distribution ppred is the
generated data (z = G(x)) from the LPI network, and the pgt is the ground
truth image distribution that needs to be learned. The maximization of LD

makes the discriminator D better assign the correct label to both ground truth
images and generated images as accurately as possible.

max
D
LD = Ex∼pgt(x) [log(D (x))] + Ez∼ppred(z) [log (1−D (z))] (1)

Then the total loss function of the generator in LPI network can be formalized
as Equation 2, it only includes the l`1 distance between the inpainted image and
truth image and the adversarial loss feedback from discriminator .

min
G
LG = L`1 + LD (2)

If respectively denote ground truth image and the inferred image as Igt and
Ipred , the l`1 loss can be specifically interpreted as Equation 3.

L`1 =
1

n

n∑
i=1

‖Igt(i)− Ipred(i)‖1 (3)
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where the n refers to the total number of pixel in the image sample, and I(i)
represents ith pixel value in image. For example, if the input image is a 256×256
RGB image, the denominator n = 256× 256× 3 = 196, 608.

4 Experiments

4.1 Implementation Details

The proposed LPI network and adversarial training process are based on Pytorch
framework [11]. And the performance evaluation of the proposed LPI network
is based on two public image datasets - Places2 [19] and CelebA [9], and the
resolution of samples in both datasets is 256× 256. All the quantitative results
in this section are based on the comparison between the real image sample Igt
and the processed composite sample Icomp = Ipred � (1−M) + Igt �M . And in
the evaluation stage, we measure the performance of 10, 000 randomly selected
samples from the test data set.

The irregular mask maps used in the experiment are provided by work [8],
which labeled the corrupted area with values 1. For the convenience of the direct
use of masks in the training process, our experiment inverts the masks and
resizes them into the resolution of 256× 256. In this experiment, the generative
loss (Equation 2) and adversarial loss (Equation 1) of LPI network are both
updated and minimized by Adam [6] optimizers with the learning rate of 1 ×
10−4 and 1× 10−3 respectively, and the parameter of Adma optimizers β1 and
β2 are set as 0.0 and 0.9. It is worth noting that we simultaneously update
the learnable parameters of the generator and discriminator at each step, and
thus the optimization degree of the network (generator/discriminator) is only
determined by different learning rates.

4.2 Quantitative Comparison and Analysis

To evaluate the inpainting performance on different degrees of image damage,
we calculate the quantitative performance of the models under the four different
damage ratios in terms of peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM) [15], and average absolute error (`1 distance) [16]. The computation
of SSIM is based on the window size of 11. In the following diagrams, the LPI-
Larger is a large version of LPI network because it set the N (involved in Section
3.2) to 4, the standard LPI network set the N to 1.

Places2 [19] is a large-scale public dataset that collected numerous natural
scenes, which contains more than 1,000,000 image samples for training and more
than 300,000 images for evaluation. Compared to Places2, the scale of CelebA [9]
is smaller, and it consists of 202,599 number of face images. In our research, we
adopt the align and cropped face image provided by CelebA to evaluate the
inpainting performance of face images.

The performance comparison on test set of Places2 [19] is shown in Table
1, it can be observed that the proposed LPI network outperforms these state-
of-art image inpainting approach in the listed four methods. And the Table 2
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records equivalent inpainting comparison on the CelebA [9] of different advanced
approaches, these data demonstrate that the excellent inpainting ability of LPI
network on face completion task and medium-scale dataset.

Table 1. The comparison of 3 kinds of quantitative evaluation over the Places2 [19],
these existing recorded data are taken from the literatures [8,10]. These data are cal-
culated over 10,000 samples from Places2 test dataset, and the correspond mask maps
are provided by PConv [8].

Method
10%-20% Damage 20%-30% Damage 30%-40% Damage 40%-50% Damage
PSNR SSIM `1(%) PSNR SSIM `1(%) PSNR SSIM `1(%) PSNR SSIM `1(%)

GLCIC [5] 23.49 0.862 2.66 20.45 0.771 4.70 18.50 0.686 6.78 17.17 0.603 8.85
CA [17] 24.36 0.893 2.05 21.19 0.815 3.52 19.13 0.739 5.07 17.75 0.662 6.62

Pconv [8] 28.02 0.869 1.14 24.9 0.777 1.98 22.45 0.685 3.02 20.86 0.589 4.11
EdgeCnt [10] 27.95 0.920 1.31 24.92 0.861 2.26 22.84 0.799 3.25 21.16 0.731 4.39

LPI-Large 30.55 0.951 0.71 26.44 0.900 1.51 23.78 0.842 2.47 21.54 0.775 3.79
LPI 30.32 0.948 0.75 26.31 0.894 1.56 23.66 0.834 2.56 21.44 0.766 3.91

Table 2. The comparison of 3 kinds of quantitative evaluation over the CelebA [19],
these existing recorded data are taken from the literature [10].

Method
10%-20% Damage 20%-30% Damage 30%-40% Damage 40%-50% Damage
PSNR SSIM `1(%) PSNR SSIM `1(%) PSNR SSIM `1(%) PSNR SSIM `1(%)

GLCIC [5] 24.09 0.865 2.53 20.71 0.773 4.67 18.50 0.689 6.95 17.09 0.609 9.18
CA [17] 25.32 0.888 2.48 22.09 0.819 3.98 19.94 0.750 5.64 18.41 0.678 7.35

EdgeCnt [10] 33.51 0.961 0.76 30.02 0.928 1.38 27.39 0.890 2.13 25.28 0.846 3.03
LPI-Large 37.03 0.978 0.33 32.00 0.952 0.76 28.75 0.920 1.31 25.74 0.874 2.19

LPI 36.44 0.976 0.36 31.65 0.949 0.79 28.37 0.914 1.37 25.33 0.867 2.32

Table 3 indicates the comparison of the parameters over these aforementioned
approaches. It is noticeable that all these statistics only consider the generators in
the whole network framework. Because in the real application of mobile devices,
we can only deploy the pre-trained generators to accomplish the image inpainting
task. Another point to note is that the CA [17] and EdgeConnect [10] are two-
stage inpainting approaches, and thus we need to calculate the parameter number
of two generators.

It can be observed that LPI-Large is a medium-scale network because it is
only larger than the network of CA [17], the LPI is the most lightweight network
and the paramters numbers is only 0.2879 times of CA [17] and GLCIC [5]. More-
over, the inpainting performance of the LPI approximate LPI-Large and outper-
forms the other state-of-art inpainting approaches (observe from Table 1,2).
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Table 3. The numbers of network parameters with involved methods, the ’M’ in ’Pa-
rameters’ column equal to 220. All the statistics only consider the generators. (*): The
statistics of Pconv [8] is based on the unofficial implementation.

Method Parameters Occupied Capacity of Disk Network Type

GLCIC [5] 5.8M 46.3MB Two-Discriminator GAN
CA [17] 2.9M(×2) 13.8MB Two-stage GAN
Pconv [8] 31.34M* 393 MB* Only Generator
EdgeCnt [10] 10.26M(×2) 41.1MB Two-stage GAN
LPI-Large 5.47M 22.0MB Generative Adversarial Netwrok
LPI 1.67M 6.74MB Generative Adversarial Netwrok

Fig. 4. The qualitative comparison on test dataset of Places2 [19] and CelebA [9] over
state-of-art inpainting methods.
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4.3 Qualitative Comparison and Observation

As shown in Figure 4, it illustrates the visual inpainting results of different meth-
ods on the test set of Places2 [19] and CelebA [9]. The images in the first three
rows are sampled from CelebA [9], and the samples in the last three rows are
from Places2 [19]. The colored dotted rectangles display the detailed difference
between our proposal and other approaches. The result demonstrates that the
LPI network can produce more reasonable and legible results while occupying
lower memory space.

Specifically, the red rectangle in the second row of Figure 4 indicates that the
inpainting result of the LPI network is more realistic and reasonable, the eyes in
inpainting results of LPI are at least parallel. And the yellow rectangle and red
rectangle in the third row show that the LPI network produces more clear face
texture.
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5 Conclusions

To promote the application of image inpainting on mobile devices and embedded
devices, this paper designs and proposes a lightweight pyramid inpainting net-
work named LPI-Net. Benefited from the lightweight ResBlock and lightweight
design of each step in the top-down pathway, the LPI network takes up at least
71.2% (CA [17] and GLCIC [5]) fewer parameters than these well-known state-
of-art inpainting method.

In addition, the experiments and comparisons show that the proposed LPI
network achieves the most advanced inpainting results in terms of qualitative
images and quantitative data, and the improvement of the inpainting of smaller
damage regions is most obvious. However, the improvement of large-damaged-
region inpainting is limited, and thus we can pay more attention to large-
damaged-region inpainting in further study.
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