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Abstract. In the field of video-based action recognition, a majority of
advanced approaches train a two-stream architecture in which an appear-
ance stream for images and a motion stream for optical flow frames. Due
to the considerable computation cost of optical flow and high inference
latency of the two-stream method, knowledge distillation is introduced to
efficiently capture two-stream representation while only inputting RGB
images. Following this technique, this paper proposes a novel distillation
learning strategy to sufficiently learn and mimic the representation of the
motion stream. Besides, we propose a lightweight attention-based fusion
module to uniformly exploit both appearance and motion information.
Experiments illustrate that the proposed distillation strategy and fu-
sion module achieve better performance over the baseline technique, and
our proposal outperforms the known state-of-art approaches in terms of
single-stream and traditional two-stream methods.
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1 Introduction

With the advent of convolutional neural networks (CNN) [17], great progress
has been made in the research field of activity understanding [21]. Generally,
video-based activity understanding is to analyze, recognize, and label the hu-
man movements appearing in existing videos. Through training the neural net-
works with large video datasets [11,16] and the technologies of transfer learning,
the CNN-based approaches achieve superior generalization in the task of action
recognition. At present, the popular action recognition approaches are mainly
divided into two categories: (1) Two-stream Convolutional Networks [24,31]

The first aforementioned architecture, the two-stream convolutional networks,
focus on the exploitation of frame-wise information and the corresponding mo-
tion between frames, the two types of information are separately processed in
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two different trained networks to produce classification scores, and the two scores
are fused to obtain the final prediction of action classes. [24] is one of the well-
known approaches that applied the framework of the two-stream convolutional
networks to video-based action recognition. Although classification accuracy can
be improved by sampling multiple frames from one video and averaging score
in this approach, continuous frames sampling will collect a large number of re-
dundant frames. Therefore, Wang et al. [31] proposes the sparse sampling and
designs aggregation functions module to utilize the multi-frame sequence in the
spatial stream. However, their temporal stream network lacks generalization.

Due to the motion information also exists in the raw RGB frames, the C3D-
based approach [28,36] introduces the 3D convolution kernels to learn spatiotem-
poral features from video clips. Following this fashion, Region Convolutional 3D
Network (R-C3D) [34] utilizes the 3D convolution [28] kernel to extract the fea-
tures and generalizes the region proposal network and regions of interest pooling
of Fater R-CNN [22] to the temporal domain. Liu et al. [19] also utilizes 3D CNN
to extract the features while capturing the correlation between spatial signals
and temporal information. Furthermore, Xu et al. [35] effectively integrates the
two-stream method with3D convolution, which significantly improves the classifi-
cation accuracy. However, accurately obtaining optical flow require considerable
computational cost, and thus increases the latency of action prediction. This
prerequisite brings enormous difficulties to practical applications of this work.

To deal with this problem, Motion-Augmented RGB Stream (MARS) [4]
trains a standard 3D convolutional neural network that mimics the representa-
tion and function of the motion stream. Due to the unitary appearance input
(only images input), it can avoid traffic computation of optical flows during the
testing phase. However, in this approach, the existing features of the motion
stream are not well exploited. It does not learn the features of the middle layer
in motion stream, nor does it absorbs the distinct characteristics of flow features
in the motion stream and the relationship among these features.

In this paper, we also train a dual-action model that only accepts RGB im-
ages but generates some feature representation similar to those obtained by a
trained motion stream network. Our research denote the dual-action model as
Dual-action Stream (DS). Notably, the Dual-action Stream in our research is
optimized by mean absolute error of multi-level features and the L1 distance be-
tween the Gram matrixes of internal feature blocks. This optimization strategy
better learns the motion representation among the middle layers of the motion
stream, as well as the style and internal relationship of the features. Moreover,
similar to the MAR, the student network (Dual-action Stream) not only learns
the representation of motion stream network but also is automatically optimized
and adjusted by cross-entropy loss of classification and the inputted image. Thus
the Dual-action Stream defacto has double functions - the representation of mo-
tion feature and the knowledge for RGB input. Because the learned Dual-action
Stream does not input the optical flow, it does not need additional computation
of optical flow in the inference stage. The evaluation on two well-known action
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recognition dataset demonstrates the proposed method outperforms the other
known state-of-art approach.

In summary, this paper mainly has the following contributions:
• This paper proposes a novel knowledge distillation method that better

learns the characteristics of the representation of motion stream network and
the internal relationship of motion features, and it has double functions.
• We propose an efficient, low-memory attention-based fusion module to

fuse the classification scores of two different streams, which can be applied to
any action recognition approaches that have two more streams.

2 Preliminaries

2.1 C3D

Previous literature [28, 34, 36] have focused on the study of spatiotemporal fea-
tures, which based on supervised learning of deep 3D convolution network on
large-scale video datasets.

The 3D ConvNets (C3D) used in this work has advantages in video processing
over 2D ConvNets. Carreira et al. [3] not only release the Kinetics video dataset
but also expand the 2D-Inception module of Inception-v1 [27] to 3D with a
additional time dimension. However, the direct application of 3D ConvNets is
time-consuming and thus cannot achieve real-time recognition, and I3D [3] has
very low compatibility with long-range temporal video modeling. To deal with
these issues, Xie et al. [33] extract the spatiotemporal information using 3D and
2D convolution, and balance the trade-off between speed and accuracy. Their
work demonstrates that the 3D ConvNets is more suitable to process low-level
features than 2D ConvNets. Therefore, the primary network of our research is
based on more efficient 3D ConvNets.

2.2 Optical Flow

The optical flow [1] contains the dynamic information of moving objects in video.
By utilizing the variation and correlation of pixels in the image domain, opti-
cal flow represents the relationship between the current frame and the previous
frame. Thus the movement of the object can be discovered in optical flow. There-
fore, the optical flow can be used to represent the motion of the target object.

However, the calculation of optical flow takes up considerable resources and
consumes a lot of time. In the past, one of the popular real-time methods to
extract optical flows is sparse optical flows [2], which can be used for object
tracking and so on. The basic principle of sparse optical flows is to calculate
feature key points by using the assumption of neighborhood consistency of op-
tical flow, then to track and extract some crucial key points. Rather the dense
flow [6] calculates the optical flow for each point, and the calculation means of
each point are the same. Therefore, the calculation cost of dense optical flow is
much greater. Although the TV-L1 algorithm [20] calculates dense flow, it has
a much faster solution. The calculation method of the optical flow used in this
paper is TV-L1 [20,37].
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2.3 Knowledge Distillation

In previous research, Hinton et al. [13] first propose the concept of knowledge
distillation by transferring knowledge of pre-trained teacher networks to the stu-
dent network. In this work, the teacher network is complex and huge, but the
reasoning performance of the teacher network is superior, while the student net-
work is lightweight and has low complexity. In addition, Romero [23] considers
feature maps in the middle layer of the teacher network to guide the corre-
sponding layer in the student network. The advantage of this work is that it can
efficiently compress the model but does not compromise the performance of the
model. However, the inputs of the student network and teacher network in this
article have the same modality.

Based on previous work, Garcia et al. [8] proposed a new distillation that can
be used in multi-mode stream network architecture. One of the recent advances
[4] advocates a distillation strategy that transfers the knowledge from the trained
motion stream to an RGB stream that only receives appearance input, this
cunning methodology avoids heaving network structure and the explicit flow
computation in the inference phase of action recognition.

The above methods either do not take into account the correlation of the fea-
tures of each layer nor the learning of the intermediate features is not sufficient.
Our method differs from the above works as: (a) the distillation strategy in our
method can better learn the features of the middle layers, and (b) the strategy
can better learn the internal relationship of the features in the middle layers. The
distillation method used in this paper is explained in Section 3.2. Our method of
learning the internal relationships of features is described in Section 3.3. Section
3.4 is our attention-based fusion module. Our experiments are in Section 4.

3 Simulation of Motion Stream

There are state-of-the-art approaches [18,26] that attempt to retrieve the motion
and appearance representation in a single network stream using 3D convolution.
They propose distinct modules to exploit motion information better. Neverthe-
less, these modules lead the architecture cumbersome and only gain modest
improvement.

Inspired one of the distillation methods [4], we propose an optimized distil-
lation solution that utilizes not only the explicit privileged knowledge of motion
stream but also distillate latent information from the features of the pre-trained
motion stream. Different from the MAR [4] approach, the proposed strategy
discovers and mines more comprehensive motion information from the interme-
diate layers of the optical flow stream, which promotes the student network to
learn from the teacher network more effectively. Furthermore, this work pro-
poses a lightweight and effective fusion module to fuse the scores produced by
the motion streams and the proposed Dual-action Stream, which improve the
performance of two-stream architecture that can be applied to the scenario in
possession of sufficient computing resources.
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3.1 Distilling Motion Information

At the beginning of the training phase, a 3D convolutional network is constructed
and trained to classify the category of the inputted flow clips, i.e., the motion
stream. Based on the trained motion steam, we can build a similar network to
learn the representation and knowledge of the trained motion stream, where
the second network acts as the role of the student. The student network inputs
and processes RGB clips while mimicking the feature extraction functions of
the trained motion stream. According to the past distillation strategies [4], the
Motion-Augmented RGB Stream (MAR) adopts Mean Squared Error (MSE)
loss to reduce the Euclidean distance of high-level features between the mo-
tion stream and targeted stream (i.e., MAR stream). The MSE is formalized as
Equation 1.

LMSE =
∥∥fMAR(n−1) − fFLOW(n−1)

∥∥
2

(1)

where the n represents the number of total layers of the network, fMAR(n−1)

refers to the features produced by the layer before the final linear layer of the
motion-augmented stream. fFLOW(n−1) refers to the feature generated by of n−1
layer of optical flow stream.

However, in the MAR approach, the significance of low-level features is ig-
nored, and the latent information is not well exploited. To address these issues,
we propose a novel distillation stragegy that comprehensively extracts the knowl-
edge of motion stream into the proposed Dual-action Stream meanwhile learning
the knowledge of RGB frames. In the proposed distillation strategy, there are
three kinds of loss terms to guide network learning.

3.2 Learning Multi-level Knowledge

According to the literature [38], the deeper layers of neural networks produce
high-level global representations, while the shallow layers stand for low-level
local features. Therefore, the proposed Dual-action Stream adopts the Mean
Absolute Error (MAE) loss to simultaneously learn multi-level features of the
motion stream. Intuitively, the proposed distillation stragegy can be graphically
shown in Figure 1. Denote the fDS(i) as i’th layer features of Dual-action Stream
network. fFLOW(i) refers to the feature of optical flow stream i’th layer. The
multi-level MAE loss term of Dual-action Stream can be expressed as Equation
2.

LMAE =
1

n− 1

n−1∑
i=1

∥∥fDS(i) − fFLOW(i)

∥∥
1

(2)

This multi-level loss term distills the different level information of the trained
motion stream into our proposed Dual-action Stream network that only operates
on RGB frames. Besides, to utilize and exploit the existing appearance input
in the training phase, the Dual-action Stream also adopts a categorical cross-
entropy loss as the second loss term.
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Fig. 1. The distillation strategy operating on multi-level features between the Dual-
action Stream and motion stream.

3.3 Learning Internal Relationship of Features

[9, 15] adopt the distance of Gramian matrix of features to learn the texture
and style of the input RGB images. The Gramian matrix is calculated by the
inner product of flattened vectors of multi-channel features. It represents the
characteristics and directionality between features, which can be thought of as
texture and style information of RGB images in the case of [9, 15]. Similar to
these methodologies, the proposed work applies the Gramian matrix loss to the
intermediate features of motion stream and proposed Dual-action Stream, which
aims to capture and learn the characteristics and internal relationship of motion
features. Let the Ci denote the channel number of features generated by i’th
layer, f (i) the flattened vectors of i’th features, the G the function of the inner
product. The Gramian loss of Dual-action Stream is described as Equation 3.

LG =

n−1∑
i

∥∥∥G(fDS(i)

)
−G

(
fFLOW(i)

)∥∥∥
1

(n− 1)CiTiHiWi
(3)

where the Ti, Hi, and Wi respectively refer to the temporal length, height, and
width of feature block generated by i’th layer.

To aggregate and exploit the aforementioned useful knowledge, we propose
a joint loss to backpropagate the Dual-action Stream network, which yields the
network automatically integrate the motion representation and appearance in-
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formation, and further improve the classification accuracy. The total loss of Dual-
action Stream can be mathematically expressed as Equation 4.

LDS = CrossEntropy (hDS , y) + α(LMAE + LG) (4)

where hDS refers to the class prediction score of Dual-action Stream network,
y is the groud truth label of multi-classification, α is a scalar weight that regulates
the influence of all motion information. LMAE is multi-level MAE loss, LG is the
loss of gram function.

3.4 Attention-based Fusion module

Even though Dual-action Stream can identify the action category by itself, the
two-stream prediction still can improve the final classification accuracy. For the
exploratory studies and the scenarios where computing resources are not strictly
required, the two-stream approach can still be used.

In this paper, we employ a linear neural module to replace the averaging
fusion to integrate the scores produced by the trained two streams (e.g., Dual-
action Stream and motion stream). The architecture of the proposed fusion mod-
ule is displayed as Figure 2.

Fig. 2. The architecture of the proposed fusion module, DS output refers to the output
of trained Dual-action Stream, the MS means the motion stream.

In the fusion module, the outputs of two streams are concatenated and fed
into a twin-layer linear model. After forwarding the two-dimensional output
of the linear model ( i.e., two full-connect layers) into the softmax layer, the
importance weights of each stream are obtained. Finally, the weighted sum of
the scores of two streams is considered as the final prediction score. Because the
parameters of motion stream and Dual-action Stream are frozen, through the
backpropagating the cross-entropy loss, the designed fusion module can obtain
the reasonable weights of each stream by updating the learnable parameters of
the linear model.
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4 Experiment

In this section, this paper describes the experimental details and results of the
Dual-action Stream and the two-stream method with the new fusion module.
First of all, we introduce the benchmark datasets and details of the implemen-
tation and training process. Afterward, we compare our approaches with the
state-of-art approach over the two well-known datasets of action recognition.
Finally, we explore the effectiveness of applying different components to our
proposed Dual-action Stream.

4.1 Datasets

The experiments are conducted and evaluated on two challenging datasets: UCF-
101 [25], HMDB-51 [14]. The UCF-101 dataset, one of the most well-known ac-
tion recognition datasets, consists of 3320 realistic videos from 101 diverse action
categories. And the spatial resolution of the original videos in this dataset is 320
× 240. The UCF-101 dataset provides abundant video resources related to hu-
man activity, which aims to help research on realistic action recognition. The
Human Motion Database (HMDB-51) is a publicly available database containing
6766 video clips distributed in 51 action categories. These videos are extracted
from a variety of sources ranging from digital movies to YouTube videos and
manually annotated. For both datasets, this paper adopts the standard evalua-
tion protocol and evaluates the classification accuracy on the split 1 test set of
the two datasets.

4.2 The Details of Implementation and Training

In this article, networks are built and trained in the PyTorch framework using
four GeForce GTX 1080Ti GPUs with a total of 44G memory. The optical flows
that are used for training motion stream and fusion module are generated by the
TV-L1 algorithm [20] with the default setting, all the RGB frames are extracted
by the raw video at 25 fps, and all these initial features are resized to 256×256.

This paper selects the 3D ResNet-101 network [32] as the backbone of motion
stream and Dual-action Stream. Similar to [12], We adopt a mini-batch stochastic
gradient descent optimizer to train all models proposed in our approach, and
the initial learning rate is set as 0.1, which will reduce by a weight decay of
0.0005 and the momentum of 0.9. In the training process, based on the previous
experience [4], this paper set the hyperparameter α as 50 in Equation 4.

Following [4,12], we conduct and evaluate the proposed approach on models
with two kinds of input types, 16 consecutive frames clip (16f-clip) and 64 con-
secutive frames clip (64f-clip). At the training phase, a random clip of the given
length (i.e., 16 or 64) is sampled from the video or optical flows, then the clip is
cropped into the region of 112×112 and randomly apply horizontal flipping.

Because the training process of motion stream is exactly the same as [4], we
utilize the pre-trained motion model provided by [4], where the last block and the
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Table 1. The accuracy of experiment over UCF101 and HMDB-51 dataset

Methods Pre-train dataset UCF-101 HMDB-51
RGB Flow RGB+Flow RGB Flow RGB+Flow

Two-stream Network [24] ImageNet 73 83.7 88 40.5 54.6 59.4
ConvNet fusion [7] ImageNet 82.6 86.2.7 90.6 47 55.2 58.2
DTPP [40] ImageNet 89.7 89.1 94.9 61.5 66.3 75
TLE+Two-stream [5] ImageNet - - 95.6 - - 71.1
ActionVLAD [10] ImageNet - - 92.7 49.8 59.1 66.9
C3D [28] sports-1M 82.3 - - 51.6 - -
C3D [29] sports-1M 85.8 - - 54.9 - -
R(2+1)D [30] sports-1M 93.6 93.3 95 66.6 70.1 72.7
TSN [31] ImageNet 85.7 87.9 93.5 - - 68.5
I3D [3] ImageNet 84.5 90.6 93.4 49.8 61.9 66.4
R(2+1)D [30] ImageNet+Kinetics 96.8 95.5 97.3 74.5 76.4 78.7
TSN [31] ImageNet+Kinetics 91.1 95.2 97 - - -
CCS + TSN [39] ImageNet+Kinetics 94.2 95 97.4 69.4 71.2 81.9

Distillnation Methods Pre-train dataset Mimic Mimic+RGB Mimic+Flow Mimic Mimic+RGB Mimic+Flow

MAR(16f) [4] Kinetics 94.6 95.6 94.9 72.3 73.1 74.5
Dual-action Stream(16f) Kinetics 95.2 95.6 95.6 73.7 73.5 76.8

MAR(64f) [4] Kinetics 97.1 95.8 97.5 80.1 80.6 80.9
Dual-action Stream(64f) Kinetics 97.2 97.6 97.7 80.3 80.8 81.2

last fully-connected layer of motion network are finetuned from the model pre-
trained on Kinetics400 [16]. During the phase of training Dual-action Stream, all
the parameters of the motion stream are frozen to ensure that the Dual-action
Stream properly simulates the optical flow network. In order to train the fusion
module, both parameters of motion stream and Dual-action Stream are fixed in
favor of convergence.

4.3 Comparison, Ablation study, and Analysis.

So as to compare the proposed training strategy to the state-of-the-art action
recognition approaches, we report the performance over the split 1 test dataset
of UCF-101 and HMDB-51 in Table 1. Note that ”Mimic” in the table refers
to Dual-action Stream/MAR stream [4], and the ”Mimic+RGB/Flow” column
refers to the averaging fusion method used in the traditional two-stream methods
[24]. It’s obvious that our proposed Dual-action Stream outperforms the other
state-of-art approaches on the 64 consecutive frames clip (64f-clip), and our
Dual-action Stream even exceeds some of the two-stream methods. On 16f-clip,
it shows that our results also have better advantages in the case of less sampling.
As for the comparison of the two-stream fusion method, our averaging fusion
approach with Dual-action Stream and flow stream is 9.7% better than the
original two-stream method [24] on UCF-101 dataset, and 21.8% on HMDB-51
dataset. For more benchmark, Our experimental results are 4.2% higher than
TSN [31] on UCF-101 and 12.7% higher on HMDB-51. Experiments show that
our method can better learn the features of the middle layers because we achieve
state-of-the-art performance.

Compared with 64f-clip, 16f-clip have fewer input frames, which is more
demanding for our method. Table 2 shows our ablation study over the UCF-
101 dataset. All these studies are conducted on the 16f-clip input. Due to the
[4] adopt the original MSE loss between the layers only before the last fully-
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Table 2. The ablation study over the UCF101 dataset at split 1(16f-clips), the different
modules are gradually added to the baseline.

Methods Accuracy

Baseline [MAR] [4] 94.6
Dual-action Stream (Multi-level MAE Loss) 94.7
Dual-action Stream (Gram Loss) 94.8
Dual-action Stream (Multi-level MAE Loss+Gram Loss) 95.2
Dual-action Stream+Flow 95.6
Dual-action Stream+Flow+Attention-based Fusion 95.7

connected layer, we consider it as our baseline. Based on the baseline, our abla-
tion experiment evaluate the performance by adding multi-level MAE loss and
Gram loss step by step. Finally, we evaluate the attention-based fusion mod-
ule by integrating Dual-action Stream with the optical flow stream. Although
the MAR [4] achieve amazing high performance, this table shows that the pro-
posed Dual-action Stream and the attention-based fusion module can efficiently
improve the performance.

5 Conclusion

In this paper, a novel distillation strategy is proposed to learn from the mo-
tion stream comprehensively, therefore it only receives RGB clips but hiddenly
utilizes both appearance and motion information. The proposed gram loss and
multi-level feature loss are proved to be able to learn motion information more
effectively. The evaluation and comparison showed that our Dual-action Stream
outperforms most of the two-stream approaches over the UCF101 and HMDB51
dataset.
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