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Abstract. With the advent of the convolutional neural network,
learning-based image inpainting approaches have received much atten-
tion, and most of these methods have been attracted by adversarial learn-
ing and various loss functions. This paper focuses on the enhancement
of the generator model and guidance of structural information. Hence, a
novel convolution block is proposed to comprehensively capture the con-
text information among feature representations. The performance of the
proposed method is evaluated on Place2 test dataset, which outperforms
the current state-of-the-art inpainting approaches.
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1 Introduction

Image inpainting, also known as image completion, is the process of restoring
the missing parts in a damaged image. Because the corrupted region only can
be inferred through its neighborhood, it is still a challenging task to recover the
details of the corrupted region to completely match the original image. From the
tuition of human painting, the edge information in the filled region can guide the
inpainting model to produce sharper results and away from the blurred edges, so
as to improve inpainting quality and make filled region reasonable. Therefore, if
we first paint the missing area with the fine structure or precise edges, the final
results guided by the repaired sketch will be greatly improved.

In consideration of these pieces of knowledge, this paper proposes a two-stage,
learning-based image inpainting approach with enhanced generator model and a
new type of convolution block. Similar to one of the most advanced works [10],
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the two stages of our proposed method are sketch reconstruction and image
completion phases, and both of the two stages also introduce the generative
adversarial network (GAN) [3].

The first stage, sketch reconstruction phase, aims to recover the gradient
information in the missing area from corrupted sketch maps. In this paper,
the Holistically-nested edge detection (HED) [12] is introduced to generate the
sketches maps for training and testing. It is worth noting that Kamyar’s work [10]
has conducted some experiments that also exploited the edge maps generated by
HED, however, they assume the edge inpainting process is a relatively easy task
and don’t put enough attention on the edge generator model. According to their
experiments, their edge generator model fails to achieve better accuracy of HED
prediction than applying Canny edge detector [1]. The sketch map generated
by HED is considered as guiding information in this paper, and we enhance the
sketch generator model by increasing the convolution layers to competent the
sketch reconstruction task.

In the second phase, the goal of image completion networks is exploiting the
repaired sketch maps and corrupted raw RGB image to color the sketch in the
filled region. This paper applies a new convolution module named Comprehensive
Feature Selection Block (CFS Block) in the second phase to comprehensively
capture the saliency of context information among the feature maps. And the
weight of the proposed module can be automatically updated during the training
phase by the backpropagation.

Although our work is close to the combination of Kamyar’s [10] and Yu’s [13],
our work proposed a novel convolution block to comprehensively select the fea-
tures among the input features and convolved features in current module mean-
while enhancing the generator model through incorporating lots of popular tech-
nology to assure the accuracy of sketch and texture prediction.

This approach we presented is evaluated on the test dataset of Place2 [15].
Compared with those state-of-art inpainting approaches, the produced results
quantitatively achieve great improvement. To sum up, our paper makes the fol-
lowing contributions:

• The introduction of the edge sketch produced by HED, which better represents
the rough shape of objects in images.

• A reinforced edge generator that can repair or hallucinate the sketch map
through rest of sketch.

• An integrated inpainting generator with a novel convolution block – CFS
Block.

2 Approach

The proposed scheme divides the learning-based image inpainting process into
two phases. At each stage, we create a generator model to produce target image
meanwhile establishing a discriminator model that feedback to the generator to
help produce high-quality results. In the first phase, the corrupted sketch and
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grayscale image are concatenated as feature map, the features and the binary
mask map (where 1 represent the non-damaged) region are fed into the genera-
tor with Partial Convolution, then the generator predicts a complete sketch as
output. At the second stage, the restored sketch and damaged RGB image are
considered as features together, they are inputted to a new generator built by
CFS Blocks, aimimg to get a complete RGB image.

In this section, we describe the detailed architecture of proposed networks
in each phase and the detailed design of the Comprehensive Feature Selection
Block (CFS Block) and briefly analyze what CFS Block actually doing.

2.1 Networks

The general architecture of the proposed model for each phase is illustrated
as Fig. 1. As mentioned in [9], Spectral Normalization can further stabilize the
training process through utilizing the maximum singular value of the weight
matrix to reduce each weight matrix, which limits the Lipschitz constant of
functions to 1. Thus we apply spectral normalization to the generators and
discriminators in both phases.

Fig. 1. The design of networks in one of stages.

The design of proposed discriminators in different phases are exactly the
same. It’s worth to note that the last two convolution layer with the same
padding reduce the number of channels to 1 after increasing the number. In
sketch reconstruction phase, the task of generator is relatively easy, thus we
apply Partial Convolution [8] to each convolution layer in this generator instead
of applying CFS Block, another difference is that we set 4 dilated residual block
with Partial Convolution in the middle part of generator rather than 8 dilated
residual blocks with CFS in image completion generator.

2.2 Comprehensive Feature Selection Block

The inspiration of the front part of CFS Block comes from classical Gated Recur-
rent Units (GRU) [2] and Gated Convolution [13], whileas the tail of the module
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directly introduce the Squeeze-and-Excitation [4] block. The proposed integrated
CFS Block aims to not only emphasize spatial relationships but also to further
concern about channel correlation in feature selection process.

Fig. 2. The internal structure of Comprehensive Feature Selection Block.

As shown in Fig. 2, we adopt two convolution layer followed by sigmoid acti-
vation from the input features to calculate the weights of input features and
the weights of convoluted features. Before the convolution, the input features
are multiplied by their corresponding weights, and the convolved values also are
multiplied by their weights. The slider-wise process is described as follows.

g = σ(WT
g x + bg) (1)

G = σ(WT
G x + bG) (2)

f = G · φ(WT
f (g · x) + bf ) (3)

In which the g represents the gating value of the original feature in one of sliding
windows and G is the gating values (weight) of the convolved feature map, the
σ denotes sigmoid function and φ represents the Leaky ReLU activation with
the slope of 0.2. The f corresponds to the weighted feature computed by those
foregoing units.

Discussion About CFS Block. All of the parameters in CFS Block (except
r) are learnable in the training process, this means that all the gating values
(weight maps) in CFS Block can automatically be updated from data, it enables
the generator to learn weight maps dynamically thus can select features both in
input feature maps and the features in the next level. Because the importance of
the damaged image, masks and sketches are obviously different, it is reasonable
to set an additional gated convolution to select the input features rather than
directly applying cross-level learning pattern [13]. Furthermore, the Squeeze-and-
Excitation submodule is set to reinforce the ability of the model to notice some
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essential channels in the computed features. However, the number of parameters
in CFS Block is a bit large, this is the reason why the relatively easy task, the
sketch inpainting task, adopts Partial Conv instead of CFS Block.

2.3 Loss Function

For convenience of formulizing, this paper denotes the generator and discrimina-
tor in sketch reconstruction as Gs and Ds, denotes the generator and discrimina-
tor in image completion as Gi and Di, and the binary mask that labels the valid
pixels as 1 (invalid pixels as 0) is expressed as M, the ground truth images in
dataset is represented as Igt, damaged image can be represented as Í = Igt �M ,
the complete sketch generated by HED is Sgt, the incomplete sketch is Ś =
Sgt�M , the composite sketch is described as Scomp = Spred�(1−M)+Sgt�M .

The sketch generator predicts the complete sketch by considering the con-
catenation of damaged grayscale image and damaged sketch as the features,
meanwhile inputting the mask M for Partial Conv. While in the image comple-
tion generator, it concatenates the inpainted sketch, damaged image and mask
as the input feature.

Spred = Gs(
[
Ígray, Ś

]
,M) (4)

Ipred = GI

([
Í,Scomp,M

])
(5)

On account of the feature-matching loss [11] is introduced as one of loss terms for
further optimizing the generator, the total loss for sketch generator is interpreted
as Eq. (6).

min
Gs

max
Ds

LGs
= min

Gs

(
0.1max

Ds

(LDs
) + 10LFM

)
(6)

The task of the discriminator is to distinguish whether the input sketch in
discriminator belongs to the grayscale image of the corresponding ground truth
image, this paper adopts the hinge loss as the target function of discriminator,
which train the discriminator more strictly.

LDs
= ESgt

[ψ(1 − Ds (Sgt, Igray))]
+ ESpred

[ψ(1 + Ds (Spred, Igray))]
(7)

Image completion generator adopts L1 distance and the perceptual loss
(Lstyle and Lperc) [6]. It enables the model to learn the high-level represen-
tation and remove the checkboard artifacts from the predicted image, the total
loss of completion generator is express as

LGi
= L�1 + 0.1LDi

+ 300Lperc + 300Lstyle + 10LFM (8)

where LDi
is similar to LDs

however the input of LDi
has a slight difference, it

just input the Igt and Ipred without any grayscale images.
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3 Experiments

All of the experiments in this paper are conducted in the dataset of Place2 [15],
the sketches are inferred from RGB images through HED [12] approach. The
irregular mask dataset used in this paper comes from the work of Liu [8]. With
these data groups (image sketch mask), We train on single NVIDIA 1080TI with
a batch size of 6 until the generators converge using Adam optimizer [7].

Table 1. Comparison of quantitative results, these data are taken from this paper [10].

Mask CA [14] GLCIC [5] PConv [8] EdgeCnt [10] Ours

10–20% PSNR 24.36 23.49 28.02 27.95 30.85

SSIM 0.893 0.862 0.869 0.920 0.951

20–30% PSNR 21.19 20.45 24.90 24.92 26.87

SSIM 0.815 0.771 0.777 0.861 0.900

30–40% PSNR 19.13 18.50 22.45 22.84 24.17

SSIM 0.739 0.686 0.685 0.799 0.841

>=40 PSNR 17.75 17.17 20.86 21.16 21.74

SSIM 0.662 0.603 0.589 0.731 0.7695

3.1 Quantitative Results

The quantitative results in the test dataset of Place2 are shown in Table 1,
this table also shows some results that produced popular inpainting methods in
comparison. In the case of all different ratios of the damaged region, the table
indicates that our results outperform the others in PSNR (Peak Signal-to-Noise)
and SSIM (Structural Similarity) metric, especially in the case of small masks. In
addition, the unique sketch prediction task achieved 77% accuracy (better than
[10]), it indicates the quantitative improvement is benefited from the enhanced
sketch generator.

3.2 Qualitative Results

The EdgeConnect approach [10] has recently shown surprising advancement in
image inpainting, therefore we compare our result with this state-of-art work
(Figs. 3 and 4). The red box in the figure indicates that the proposed approach
with CFS Block can produce a clearer color image with the more obvious edges
than EdgeConnect, the 5th column show the generated sketch in the proposed
approach, the orange lines in these images represent the inpainted line by gener-
ator, it demonstrates the sketch generator with Partial Conv already can handle
the sketch reconstruction task.
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Fig. 3. The qualitative comparison of results. (a) Ground Truth image. (b) Corrupted
image. (c) EdgeConnect [10]. (d) Ours. (e) Restored sketches of Ours. (Color figure
online)

Fig. 4. The additional qualitative comparison.
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4 Conclusions

This paper proposed a two-stage image inpainting approach with a novel fea-
ture selection mechanism – CFS Block, and proves that the enhanced sketch
generator and the proposed comprehensive feature selection mechanism can sig-
nificantly improve the inpainting results. The qualitative comparisons show that
the proposed approach produces visually more pleasing results, and the objective
evaluations in various sizes of masks demonstrate the superiority of the proposed
approach.
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